

Proposed Improvements	for Otay Mesa	Road btwn Sany	o and Enrico Fermi

Caltrans Striping Concept for La Media Road btwn Otay Mesa and Airway

Caltrans Striping Concepts for Airway Road btwn Harvest and Sanyo

Caltrans Striping Concept	t for Britannia Blvd btv	vn Otay Mesa Rd and	Airway Rd

APPENDIX M

- Approved Design Exception RequestHawano Drive North Access Memo

Approved Design Exception Request

County of San Diego

DEPARTMENT OF PUBLIC WORKS

RICHARD E. CROMPTON DIRECTOR

5201 RUFFIN ROAD, SUITE D SAN DIEGO, CALIFORNIA 92123-4310

(858) 694-2055 FAX: (858) 694-8928 Web Site: sdcounty.ca.gov/dpw/

October 7, 2011

KIMLEY-HORN AND ASSOCIATES, INC Attn: Adam Corral, P.E. 401 B Street, Suite 600, San Diego, CA 92101

REQUEST FOR DESIGN EXCEPTION TO A ROAD STANDARD AND/OR MODIFICATION TO PROJECT CONDITIONS – HAWANO DRIVE NORTH/ SOUTH CUL-DE-SACS ROADS AND DRIVEWAYS CENTERLINE SEPARATION, EAST OTAY MESA, TM 5566 – KIVA 10-0123176

Dear Mr. Corral:

Department of Public Works (DPW) reviewed your application package and Assessment of the Siempre Viva Road/ Hawano Drive North Access, prepared by Darnell & Associates, dated August 19, 2011 for the Exceptions Request to the Public Road Standards.

The requested design exceptions were as follows:

- Allow modification of Public Road Standards, Sec. 4.5.J. for proposed Hawano Drive North and Hawano Drive South, Industrial/ Commercial Cul-De-Sac Roads to exceed the average daily vehicular trips (ADT) of 1,000 ADTs. The projected traffic for Hawano Drive North and Hawano Drive South is 5,319 ADT and 3,410 ADTs, respectively.
- Allow modification of Public Road Standards, Section 6.1.C.3 to allow centerline separations of less than 600 feet into Alta Road, a circulation element road, between Siempre Viva Road, a circulation element road, and the proposed shared driveways on Lots 11-12; and between Airway Road, a circulation element road, and the proposed shared driveways on Lots 9-10.

TM 5566 Mr. Adam Corral, P.E. Page 2

DPW is able to support your request for design exceptions to the above project conditions. The project shall provide the following roads mitigation conditions:

- The proposed Hawano Drive North cul-de-sac shall provide a 310-foot long leftturn pocket along the eastbound direction of Siempre Viva Road and place a 50foot long no-parking/ red curb restriction at the northwest corner of the Siempre Viva Road/ Hawano Drive North intersection in order to accommodate the truck turning movements.
- 2. The Siempre Viva Road/ Hawano Drive North intersection shall be signalized.
- 3. The project's driveways along Alta Road shall be designed to have a maximum possible separation of 300 feet or more between other driveways or intersections. Adequate sight distance, in both directions shall be provided at each driveway pursuant to the prevailing speeds along, Alta Road. Hawano Drive North and Hawano Drive South to the satisfaction of the Director of Public Works.
- 4. Based on previous supported design exception requests for East Otay Mesa development, DPW will allow centerlines separation of a minimum 100-foot between driveways accessing Industrial/Commercial Cul-De-Sac Roads. Adequate sight distance in both directions shall be provided at each driveway pursuant to the prevailing speeds along Hawano Drive North and Hawano Drive South including driveways entering the cul-de-sacs to the satisfaction of the Director of Public Works.

It has been determined your request for design exceptions will not adversely affect the safety and flow of traffic in this area.

If you have any questions or need additional information related to this request, please contact Edwin M. Sinsay, Team Leader at (858) 694-2486 or via e-mail at edwin.sinsay@sdcounty.ca.gov.

Sincerely,

TROY BANKSTON, Deputy Director

Department of Public Works

CC: Gail Wright, Project Manager, Department of Planning and Land Use, M.S. 0650 Rosemary Rowan, Planning Manager, DPLU, M.S. 0650 Bob Goralka, County Traffic Engineer, DPW, M.S. 0338 Ricardo Jinich, Paragon, 4370 La Jolla Village Dr., Suite 640, San Diego, CA 92122 Bill Darnell, 2870 Fourth Avenue, Suite A, San Diego, CA 92103

Hawano Drive North Access Memo

Darnell & ASSOCIATES, INC.

TRANSPORTATION PLANNING & TRAFFIC ENGINEERING

MEMORANDUM

DATE:

August 19, 2011

TO:

Dan Berkus, Paragon Management Company

FROM:

Bill E. Darnell, P.E.

Vicki S. Haskell, P.E.

D&A Ref. No: 091201

RE:

Hawano (TM 5566; ER 93-19-006OO) - Revised Assessment of the Siempre Viva

Road/Hawano Drive North Access

In response to the County of San Diego's August 10, 2010 comment letter, Darnell & Associates, Inc. (D&A) has provided some additional analysis related to the Siempre Viva Road/Hawano Drive North Access. This revised memo provides the requested all-way stop-control warrant analysis, the buildout traffic volumes, and the updated queuing analysis which incorporates the projected truck demand.

As was addressed previously, D&A has carefully reviewed the traffic distribution and circulation for the proposed Hawano project to determine the access requirements for the Siempre Viva Road/Hawano Drive North intersection assuming that there would be a median break allowed on Siempre Viva Road. Minor revisions to the traffic distribution from what was previously illustrated in our March 30, 2011 traffic study report were made to allow for more project traffic utilization of the segment of Airway Road between Siempre Viva Road and Alta Road. Figure A provides an illustration of the updated existing plus project Phases 1-2 traffic volumes.

In their August 10, 2010 comment letter, the County asked for an illustration of the buildout peak hour traffic volumes that would exist at the Siempre Viva Road/Hawano Drive North Access. To estimate the peak hour buildout traffic volumes, D&A referenced the 2035 peak hour traffic volumes (with the two interchange alternative) from the November 2010 Traffic Technical Report for State Route 11 and the Otay Mesa East Port of Entry which was prepared by VRPA Technologies. Specifically, the peak hour volumes at the Siempre Viva Road/Alta Road intersection were utilized to determine the through traffic at the Siempre Viva Road/Hawano Drive North Access. Figure B provides an illustration of the buildout plus project Phases 1-2 traffic volumes.

The Siempre Viva Road/Hawano Drive North intersection was reanalyzed under existing plus project Phases 1-2 conditions and buildout plus project Phases 1-2 conditions utilizing the Synchro version 6 software.

091201-Hawano Drive North Access-memo-rev (08-19-11)-,doc/08-11

Page 1 of 6

TRAFFIC VOLUMES

LEGEND

- TRAVEL LANE/DIRECTION OF TRAVEL

- TRAFFIC SIGNAL

XX/YY - AM/PM PEAK HOUR TURN VOLUME

• Z,ZZZ - AVERAGE DAILY TRAFFIC

Darnell & ASSOCIATES, INC.

091201DD.dwg 8-18-11 JM

FIGURE B
BUILDOUT PLUS PROJECT PHASES 1-2 CONDITIONS
AT SIEMPRE VIVA ROAD/ HAWANO DRIVE NORTH

The analysis found that under existing plus project Phases 1-2 conditions, all critical movements at the Siempre Viva Road/Hawano Drive North intersection can operate at an acceptable level of service (LOS) C or better during both the AM and PM peak hours with all-way stop-control with the lane configurations depicted in Figure A. Daily signal warrant analysis found that the installation of a traffic signal at the Siempre Viva Road/Hawano Drive North intersection under existing plus Phases 1-2 project conditions, and is therefore, not recommended. Further, the all-way stop-control analysis found that all-way stop-control is warranted at the Siempre Viva Road/Hawano Drive North intersection under existing plus project Phases 1-2 conditions. A copy of the synchro, signal warrant, and all-way stop-control warrant worksheets have been attached to the back of this memo.

Under buildout conditions, the signal warrant analysis found that a traffic signal would be warranted at the Siempre Viva Road/Hawano Drive North intersection. Further, due to the unbalanced traffic volumes that would occur on the approaches (there would be significantly higher traffic volumes on Siempre Viva Road than Hawano Drive North) under buildout conditions, all-way stop-control would not be recommended under buildout conditions. Analysis found that under buildout conditions the southbound left turn movement would operate at an unacceptable LOS E during the AM peak hour and LOS F during the PM peak hour if the intersection was only stop-controlled on the Hawano Drive North (southbound) approach. Therefore, it is recommended that under buildout conditions the Siempre Viva Road/Hawano Drive North intersection be signalized. The analysis found that if signalized, the Siempre Viva Road/Hawano Drive North intersection will operate at an acceptable LOS A during the AM peak hour and LOS B during the PM peak hour under buildout plus project Phases 1-2 conditions with the lane configurations depicted in Figure B. A copy of the synchro, signal warrant, and all-way stop-control warrant worksheets have been attached to the back of this memo.

To determine how long the eastbound left turn lane would need to be, D&A conducted a queuing analysis at the Siempre Viva Road/Hawano Drive North intersection. The queuing analysis was conducted utilizing SimTraffic; a simulation software which uses the input values from the Synchro program. The queuing analysis was conducted for the AM and PM peak hours for the existing plus project Phases 1-2 and buildout plus project Phases 1-2 conditions. Ten (10) simulation runs were conducted for each scenario. To respond to the County's comments, the revised queuing analysis included the following vehicle mix: 78% passenger cars, 8% 2-axle trucks; 4% 3-axle trucks; and 10% 4+-axle trucks. The 2-axle and 3-axle trucks were assumed to have a vehicle length of 53 feet while the 4+-axle trucks were assumed to have a vehicle length of 53 feet. Table 1 provides a summary of the queuing analysis.

Peak Hour	Movement	95 th Percentile Queue (Feet) Run											
												1	2
							Existin	g Plus Pro	ject Phase	s 1-2			
AM	EBL	107	107	107	97	116	135	90	92	89	76	102	135
PM	EBL	56	41	63	47	54	57	57	53	45	57	- 53	63
					Buildo	ut Plus Pro	ject Phase	s 1-2					
AM	EBL	296	280	215	214	238	222	310	247	294	256	257	310
PM	EBL	85	94	82	60	80	75	61	71	78	96	78	96

As shown in Table 1, the maximum 95th-percentile queue observed for the eastbound left turn movement was 310 feet. Therefore, it is recommended that the eastbound left turn lane at the Siempre Viva Road/Hawano Drive North Drive intersection be at least 310 feet long.

D&A also looked at the truck turning movements exiting Hawano Drive North onto Siempre Viva Road to determine whether no parking/red curb restrictions would be required on the northwest corner of the intersection. As illustrated in Figure C, a review of the truck turning movements found that approximately 50 feet of no parking/red curb restrictions would be required at the northwest corner of the Siempre Viva Road/Hawano Drive North intersection in order to adequately accommodate the truck turning movements.

Please feel free to contact the office if you have any questions.

ATTACHMENT

- Existing Plus Project Phases 1-2 Analysis
- ➤ Buildout Plus Project Phases 1-2 Analysis

Existing Plus Project Phases 1-2 Analysis

-All Way Stop Control Warrants

TRAFFIC WARRANT FOR MULTI-WAY STOP CONTROLLED INTERSECTION -ADOPTED FROM MUTCD 2009 EDITION (SECTION 2B.07)

Intersection:

Siempre Viva Road/Hawano Drive North

Condition/Year:

Existing Plus Project Phases 1-2

SUPPORT I)

	Support Criteria		
1. Is the volume of traffic on the intersecting	Peak Hour Volume on Major Street (Siempre Viva Rd)	Peak Hour Volume on Minor Street (Hawano Drive North)	YES
roads approximately equal?	EB Approach: AM 550, PM 137 WB Approach AM 196, PM 344	SB Approach: AM 127, PM 516	ILS
2. Is there is a safety concern associated with pedestrians, bicyclists, and all other users?	No	Comments: This intersection currently not exist, however, there is not anticip be a high volume of pedestrians or bic activity in this area	ated to
Can all-way stop control be useful as a safety measure at the intersection?	No	Comments:	

GUIDANCE II)

A. Traffic Signal Warrant

See Attached Signal Warrants. As shown in the attached signal warrants, a traffic signal will not be warranted at this intersection based on average daily volumes.

B. Crash Warrants

		Cr	ash History	
Intersection	No. of Crashes	No. of Years	No. of crashes ¹ correctable by All-Way Stop	No. of crashes correctable by All- Way Stop >= 5 in 12 month period
Siempre Viva Road @ Hawano Drive North Such crashes include right				

C. Minimum Volumes

Hourly Volume								>- 200			
Street	Approach	7-8 AM	8-9 AM	9-10 AM	2-3 PM	3-4 PM	4-5 PM	5-6 PM	7-8 PM	Avg.	>= 300 vph
Siempre Viva Rd	Major Street (Total of both approaches)	746	723	602	302	386	481	405	336	498	YES

					Hourly	Volume					>=	Avg.	
Street	Approach	Mode Mode	7-8 AM	8-9 AM	9-10 AM	2-3 PM	3-4 PM	4-5 PM	5-6 PM	7-8 PM	Avg.	200 uph	Delay to Veh. Tr.
	Veh.	127	123	103	323	414	516	435	360	300		AM Peak	
Намапо	Minor Street	Ped.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	De	SBL Delay =
Dr. North	(Total of both approaches)	Cyc.	Nom.	Nom.	Nom.	Nom,	Nom.	Nom.	Nom.	Nom.	Nom.	YES	36.5 sec/veh
		Total	127	123	103	323	414	516	435	360	300		SCUTVOIT

		85 th Percentile	> 40 mph or 65		of the minimum rant satisfied
Street	Approach	Approach Speed of Major Street	km/h	70 % of 300 vph	70 % of 200 uph
Siempre Viva Rd	Major Street (Total of both approaches) ar; uph = units per hour; mph	55 mph (a)	YES	YES	YES

A. No. of Criteria Satisfied to 80 percent

	No. of Criteria Sa	tisfied to 80 percent	
Intersection	В	C1	C2
Siempre Viva Road @ Hawano Drive North Criterion C.3 is excluded from this condit	YES	YES	YES

III) OPTION

	Option Criteria		
	Criterion	Criterion Satisfied	Comments
A.	Need to control left-turn conflicts	YES	There are 393 EBL and 118 SBL projected under existing plus project conditions
B.	Need to control vehicle/ pedestrian conflicts near locations that generate high pedestrian volumes	NO	
C.	Locations where a road user, after stopping, cannot see conflicting traffic and is not able to reasonably safely negotiate the intersection unless conflicting cross traffic is also required to stop; and	NO	
D.	An intersection of two residential neighborhood collector (through) streets of similar design and operating characteristics where all-way stop control would improve traffic operational characteristics of the intersection. erion C.3 is excluded from this condition.	NO	

All-Way Stop Control 100 % Warrant Satisfied:	YES	
All-Way Stop Control 70 % Warrant Satisfied:	YES	June and inside the

-Signal Warrants

2003 including Revisions 1 and 2, as amended for use in California) Existing + Project Phases 1-2 Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 1 of 4)

oist co ojorst: Siemp norst: Hawa		PM Tiva R		- ,	-	Critica	COUNT CALC_ CHK _ al Appro	oach S	peed	DA	ATE 8	mph
Speed limit or critic In built up area of								0	{}	RURA		
ARRANT 1 - Eig condition A or C	onditio	n B or	comb	inatio	of A	and		ist be		isfied)	YES [NO E
ondition A - Min	MININ	Vehicle IUM REGHOWN	QUIREN	MENTS			19574).1	1% SA	and the same		YES [NO E
	U	R	U	R							,	
APPROACH LANES		1 4	2 or	More	2	8/9	5/0	12	3/0	5/5	1/40	16/H
Both Approaches Major Street	500 (400)	350 (280)	600 (480)	(420 (336)	746	723	602	302	386	, 481	46 3	36
Highest Approach Minor Street	150 (120)	105 (84)	200 (160)	(140)	127	123	103	323	414	516	435 3	360
ondition B - Inte	MININ	MUM RESHOWN	QUIRE	MENTS	raffic			1% SA 1% SA	TISI	FIED	YES C	I NO D
APPROACH LANES		1	2 or	More		/	1	/	/	/	//	/H
Both Approaches Major Street	750 (600)	525 (420)	900 (720)	(630 (504)			1			0		
Highest Approach Minor Street	75 (60)	53 (42)	100 (80)	(70 (56)								
ombination of C	onditio	ons A	& B			-		SA	TISI	FIED	YES [ио р
REQUIREMENT		. 17		CONDIT	ION				V	FU	LFILLED	- 1
TWO CONDITION SATISFIED 80%	AN	MINIMU ID, INTERF					TRAF	FIC	No	Yes [□ No	
AND, AN ADEQUACAUSE LESS DE TO SOLVE THE T	ATE TRI LAY AN	AL OF C	THER NVENIE	ALTERN NCE TO	ATIVE	S TH	AT COL	ILED		Yes (□ No	

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Chapter 4C - Traffic Control Signal Needs Studies Part 4 - Highway Traffic Signals

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Shee		
Stempre Viva Road/Hawaro Dr 1 Existing + Project Phases	vorh	
Existing + Project Phases	(-2	
WARRANT 2 - Four Hour Vehicular Volume SATISFIED		ио 💢
Record hourly vehicular volumes for any four hours of an average day.		
APPROACH LANES One More 20 8 4 15 Hour		
Both Approaches - Major Street X 구식6 구23 나 81 나 6		
Higher Approach - Minor Street X 129 123 516 435		
*All plotted points fall above the applicable curve in Figure 4C-1. (URBAN AREAS)	Yes 🗆	No 🗆
OR, All plotted points fall above the applicable curve in Figure 4C-2. (RURAL AREAS)	Yes 🔲	No 🇹
WARRANT 3 - Peak Hour SATISFIED (Part A or Part B must be satisfied)	YES 🗹	№ □
PART A SATISFIED	YES 🗆	мо 🛛
(All parts 1, 2, and 3 below must be satisfied for the same	123	ואָן טאו
(All parts 1, 2, and 3 below must be satisfied for the same	123	ту ом
(All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) 1. The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane		No X
(All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) 1. The total delay experienced by traffic on one minor street approach (one direction only)	Yes 🗆	
 All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) 1. The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND 	Yes 🗆	No X
 (All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes; AND The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with 	Yes 🔲	Nо Д́
 (All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes; AND The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with three approaches. 	Yes 🔲	No 🎑
All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) 1. The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND 2. The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes; AND 3. The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with three approaches. SATISFIED	Yes 🔯	No □ No □
All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) 1. The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND 2. The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes; AND 3. The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with three approaches. PART B SATISFIED APPROACH LANES One More	Yes 🔯	No □ No □
All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) 1. The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND 2. The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes; AND 3. The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with three approaches. PART B APPROACH LANES One More APPROACH LANES One More APPROACH Street APPROACH STREET One More APPROACH STREET One More	Yes 🔯	No □ No □
All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) 1. The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND 2. The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes; AND 3. The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with three approaches. PART B APPROACH LANES One More APPROACH LANES One More	Yes 🔯	No □ No □
All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) 1. The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND 2. The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes; AND 3. The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with three approaches. PART B APPROACH LANES One More APPROACH LANES One More APPROACH Street APPROACH STREET One More APPROACH STREET One More	Yes 🔯	No □ No □
All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods) 1. The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND 2. The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes; AND 3. The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with three approaches. PART B APPROACH LANES One More PART B SATISFIED Higher Approach - Minor Street Higher Approach - Minor Street	Yes 🔯 Yes 🔯	No □ No □ No □

California MUTCD

(FHWA's MUTCD 2003 including Revisions 1 and 2, as amended for use in California)

Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-2. Warrant 2, Four-Hour Vehicular Volume (70% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 79 64 km/h OR ABOVE 40 mph ON MAJOR STREET)

VEHICLES PER HOUR (VPH) *Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower

threshold volume for a minor-street approach with one lane.

Chapter 4C - Traffic Control Signal Needs Studies Part 4 - Highway Traffic Signals

Figure 4C-3. Warrant 3, Peak Hour

Existing + Project
Phases 1-2
Siempre Viva/
Hawano Dr N

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Chapter 4C - Traffic Control Signal Needs Studies Part 4 - Highway Traffic Signals

Figure 4C-103 (CA). Traffic Signal Warrants Worksheet (Average Traffic Estimate Form)

		CALC_WH	DATE	8-18-11
DIST	CO RTE PM	CHK	DATE	
Major St: _	Siempre Viva Rd	Critical Approach Speed	55	-
Minor St: _	Hawano Dr Nort	Critical Approach Speed		mph
	limit or critical speed on major street traffic t up area of isolated community of < 10,000	population	URAL (R)	

(Based on Estimated Average Daily Traffic - See Note)

CONDITION A - Minimum Vehicular Volume	Minimum Re EAI	quirements DT
Satisfied Not SatisfiedX	Vehicles Per Day on Major Street (Total of Both Approaches)	Vehicles Per Day on Higher-Volume Minor Street Approach (One Direction Only)
Number of lanes for moving traffic on each approach Major Street Minor Street 1	Urban Rural 8,000 5,600 9,600 6,720 9,600 6,720 8,000 5,600 5,15	Urban Rural 2,400 1,680 2,400 1,680 3,200 2,240 3,200 2,240 3,200 2,240
CONDITION B - Interruption of Continuous Traffic Satisfied Not SatisfiedX	Vehicles Per Day on Major Street (Total of Both Approaches)	Vehicles Per Day on Higher-Volume Minor Street Approach (One Direction Only)
Number of lanes for moving traffic on each approach Major Street Minor Street 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Urban Rural 12,000 8,400 14,400 10,080 14,400 (10,080 12,000 8,400 5,115	Urban Rural 1,200 850 1,200 850 1,600 1,120 1,600 2,660
Combination of CONDITIONS A + B Satisfied Not Satisfied No one condition satisfied, but following conditions fulfilled 80% or more A B	2 CONDITIONS 80%	2 CONDITIONS 80%

Note: To be used only for NEW INTERSECTIONS or other locations where it is not reasonable to count actual traffic volumes.

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Chapter 4C - Traffic Control Signal Needs Studies Part 4 - Highway Traffic Signals

-Synchro Analysis

	*	_	4	4	1	1	Datisting + Hawano Fhases 1-2- AM-Option
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	†	7>	Y W	79	7	
Sign Control		Free	Free		Stop	*	
Grade		0%	0%		0%		
Volume (veh/h)	393	157	78	118	29	98	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	427	171	85	128	32	107	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	213				1174	149	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	213				1174	149	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF(s)	2.2				3.5	3.3	
p0 queue free %	69				78	88	
cM capacity (veh/h)	1357				145	898	
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total	427	171	213	32	107	- Holling Marie	
Volume Left	427	0	0	32	0		
Volume Right	0	0	128	0	107		
cSH	1357	1700	1700	145	898		
Volume to Capacity	0.31	0.10	0.13	0.22	0.12		
Queue Length 95th (ft)	34	0	0	20	10		
Control Delay (s)	8.9	0.0	0.0	36.5	9.5		
Lane LOS	A			E	A		
Approach Delay (s) Approach LOS	6.3		0.0	15.7 C			
Intersection Summary							
Average Delay			6.3				
Intersection Capacity Util Analysis Period (min)	ization		46.4% 15	IC	U Level	of Service	Α

Darnell & Associates, Inc.

8/18/2011-vsh

Y:\091201-hawano\Analysis\Synchro\Synchro-08-04-11\Project Access\Existing+Project-Phases 1-2-AM-Opt 2.sy7

		-					- Trawano i nases 1-2- Fivi-Option
	1		+	*	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	4	1	F		J.	7	property and the second
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Volume (veh/h)	98	39	315	29	118	393	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	107	42	342	32	128	427	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	374				614	358	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	374				614	358	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF(s)	2.2				3.5	3.3	
p0 queue free %	91				69	38	
cM capacity (veh/h)	1185				415	686	
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total	107	42	374	128	427		
Volume Left	107	0	0	128	0		
Volume Right	0	0	32	0	427		
cSH	1185	1700	1700	415	686		
Volume to Capacity	0.09	0.02	0.22	0.31	0.62		
Queue Length 95th (ft)	7	0	0	32	109		
Control Delay (s)	8.3	0.0	0.0	17.5	18.5		
Lane LOS	A			C	C		
Approach Delay (s)	6.0		0.0	18.3			
Approach LOS				C			
Intersection Summary							
Average Delay Intersection Capacity Util Analysis Period (min)	lization		10.2 49.3% 15	10	CU Level	of Service	A

Darnell & Associates, Inc.

8/18/2011-vsh
Y:\091201-hawano\Analysis\Synchro\Synchro-08-04-11\Project Access\Existing+Project-Phases 1-2-PM-Opt 1.sy7

	*	-	4	*	1	1	Tan Option
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	M	1	7>		*	7	
Sign Control		Stop	Stop		Stop		
Volume (vph)	393	157	78	118	29	98	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	427	171	85	128	32	107	
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total (vph)	427	171	213	32	107	The same of the sa	The state of the s
Volume Left (vph)	427	0	0	32	0		
Volume Right (vph)	0	0	128	0	107		
Hadj (s)	0.53	0.03	-0.33	0.53	-0.67		
Departure Headway (s)	5.7	5.2	5.1	7.0	5.8		
Degree Utilization, x	0.67	0.24	0.30	0.06	0.17		
Capacity (veh/h)	620	681	685	476	569		
Control Delay (s)	18.3	8.6	10.2	9.2	8.7		
Approach Delay (s)	15.5		10.2	8.8			
Approach LOS	C		В	A			
Intersection Summary							
Delay			13.4				
HCM Level of Service			В				
Intersection Capacity Util Analysis Period (min)	lization		46.4% 15	10	CU Level	of Service	A

	*	-	-	*	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	1	f)		34	7"	
Sign Control		Stop	Stop		Stop		
Volume (vph)	98	39	315	29	118	393	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	107	42	342	32	128	427	
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total (vph)	107	42	374	128	427		No.
Volume Left (vph)	107	0	0	128	0		
Volume Right (vph)	0	0	32	0	427		
Hadj (s)	0.53	0.03	-0.02	0.53	-0.67		
Departure Headway (s)	7.2	6.7	6.0	6.6	5.4		
Degree Utilization, x	0.21	0.08	0.62	0.24	0.64		
Capacity (veh/h)	467	499	581	526	637		
Control Delay (s)	10.9	9.0	18.4	10.4	16.4		
Approach Delay (s)	10.4		18.4	15.0			
Approach LOS	В		C	C			
Intersection Summary							
Delay			15.5				
HCM Level of Service			C				
Intersection Capacity Util	ization		49.3%	IC	U Level	of Service	A
Analysis Period (min)			15		Della maja kalan		**

Buildout Plus Project Phases 1-2 Analysis

-All Way Stop Control Warrants

TRAFFIC WARRANT FOR MULTI-WAY STOP CONTROLLED INTERSECTION – ADOPTED FROM MUTCD 2009 EDITION (SECTION 2B.07)

Intersection:

Siempre Viva Road/Hawano Drive North Buildout Plus Project Phases 1-2

Condition/Year: Build

n support

	Support Criteria					
1. Is the volume of traffic on the intersecting	Peak Hour Volume on Major Street (Siempre Viva Rd)	Peak Hour Volume on Minor Street (Hawano Drive North)	NO			
roads approximately equal?	EB Approach: AM 1,439; PM 945 WB Approach AM 1,091; PM 1,124	SB Approach: AM 127, PM 511				
2. Is there is a safety concern associated with pedestrians, bicyclists, and all other users?	No .	Comments: This intersection currently not exist, however, there is not anticip to be a high volume of pedestrians or bicycle activity in this area	pated			
Can all-way stop control be useful as a safety measure at the intersection?	No	Comments:				

II) GUIDANCE

A. Traffic Signal Warrant

See Attached Signal Warrants. As shown in the attached signal warrants, a traffic signal will be warranted under buildout plus project conditions based on average daily conditions, the estimated four-hour volumes, and the estimated peak hour volume conditions.

B. Crash Warrants

		Cr	ash History	
Intersection	No. of Crashes	No. of Years	No. of crashes correctable by All-Way Stop	No. of crashes correctable by All- Way Stop >= 5 in 12 month period
Siempre Viva Road @ Hawano Drive North	N/A			

C. Minimum Volumes

			Hourly Volume								
Street	Approach	7-8 AM	8-9 AM	9-10 AM	2-3 PM	3-4 PM	4-5 PM	5-6 PM	7-8 PM	Avg.	300 vph
Siempre Viva Rd	Major Street (Total of both approaches)	2,384	2,310	1,925	1,388	1,779	2,215	1,866	1,545	1,927	YES

Note: Since this intersection does not currently exist, the volumes were estimated based on the existing traffic splits on Siempre Viva Road at Pasco De Las Americas

		m						>==	Avg.				
Street	Approach	Mode Mode	7-8 AM	8-9 AM	9-10 AM	2-3 PM	3-4 PM	4-5 PM	5-6 PM	7-8 PM	Avg.	200 uph	Delay to Veh. Tr. 1
Hawano	Minor Street (Total of both approaches)	Veh.	127	123	103	320	410	511	430	356	298	YES	AM Peak SBL Delay = 36.5 sec/yeh
		Ped.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		
Dr. North		Cyc.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		
	77	Total	127	123	103	323	414	516	435	360	300		SCO/VCII

Street	Approach	85 th Percentile Approach Speed of	> 40 mph or 65	If YES is any of the min vehicular warrant satisf		
Succi		Major Street	km/h	70 % of 300 vph	70 % of 200 uph	
Siempre Viva Rd	Major Street (Total of both approaches)	55 mph (a)	YES	YES	YES	

A. No. of Criteria Satisfied to 80 percent

	No. of Criteria Sa	tisfied to 80 percent	
Intersection	В	CI	C2
Siempre Viva Road @ Hawano Drive North	YES	YES	YES

III) OPTION

	Option Criteria		311.00
	Criterion	Criterion Satisfied	Comments
A.	Need to control left-turn conflicts	YES	There are 249 EBL and 131 SBL projected under buildout plus project conditions
B.	Need to control vehicle/ pedestrian conflicts near locations that generate high pedestrian volumes	NO	
C.	Locations where a road user, after stopping, cannot see conflicting traffic and is not able to reasonably safely negotiate the intersection unless conflicting cross traffic is also required to stop; and	NO	
D.	An intersection of two residential neighborhood collector (through) streets of similar design and operating characteristics where all-way stop control would improve traffic operational characteristics of the intersection. erion C.3 is excluded from this condition.	NO	

All-Way Stop Control 100 % Warrant Satisfied: YES, However – since the traffic volumes are not balanced, an all-way stop-control is not recommended under buildout conditions. Rather, since a traffic signal is warranted, a traffic signal is recommended under buildout conditions.

All-Way Stop Control 70 % Warrant Satisfied: YES, However – since the traffic volumes are not balanced, an all-way stop-control is not recommended under buildout conditions. Rather, since a traffic signal is warranted, a traffic signal is recommended under buildout conditions.

-Signal Warrants

Figure	4C-101	1 (CA).	Traffi	Ruil	al Wa	rrant	+ P	kshe	eet (Sheet	1 of	4)	
				Ruit	000		COUN						
-	NF	-					CALC.		XH		ATE_	8-	18-1
IST CO	RTE	PM	0)			CHK .				ATE_		- 1
ijor St: Siem	pre	Viva	. Po	,		Critic	al Appr	nach	Snan	4			
norst: Hau	vano	Dr	Nor	th			al Appr				5	55	mph mph
Speed limit or criti In built up area of	*								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		AL (R)		
ARRANT 1 - Eigondition A or C	ondition	on B or	comi	binatio		A and	B mu			FIED tisfied	YES	0	ио ј
ondition A - Min	imum '	Vehicle	• Volu	me			100	1% S	ATIS	FIED	YES		NO X
	MININ (80% 5	MUM RESHOWN	QUIRE IN BRA	MENTS CKETS)			80	1% S	ATIS	FIED	YES		NO D
	U	R	υ	R				10					
APPROACH LANES		1	2 or	More	2	8/8	1/0	1/1	3/	3/	3/6	6/6	X/Ho
Both Approaches Major Street	500 (400)	350 (280)	600 (480)	(336)	2381	2316	1925	1386	197	9 221	5 1860	1545	1
Highest Approach Minor Street	150 (120)	105 (84)	200 (160)	(1407)	127	123	103	320	410	511	436	356	
ondition B - Inte	MININ	ON OF C	QUIRE	MENTS	1			% S	ATIS	FIED FIED	YES	M	NO [
	U	R	U	R				Sa	me	as	abou	e	141
APPROACH LANES		1	2 or	More	1	1	1	1	1	/	/	/	/Ho
Both Approaches Major Street	750 (600)	525 (420)	900 (720)	(630)					1		1		1
Highest Approach Minor Street	75 (60)	53 (42)	100 (80)	(56)									
mbination of C	onditio	ons A 8	åВ			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW		Si	ATIS	FIED	YES		NO X
REQUIREMENT		- April 1		CONDIT	TON	1			1	FU	LFILLI		1
TWO CONDITION	A.	MINIMU	IM VEH	ICULAR	VOLU	ME			NO		_	~	1
SATISFIED 80%	AN	D. INTERF	RUPTIO	N OF C	NITNO	uous	TRAF	FIC	V	Yes	L N	lo 🔯	
AND, AN ADEQUA	ATE TRI	AL OF C	THER	ALTERN	ATIVE	STHA	TCOL	LD		Yes		10 🗆	4.

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 4)

WARRANT 2 - Four Hour Vehicular Volume SATISFIED	YES 📉	NO 🗆
Record hourly vehicular volumes for any four hours of an average day. APPROACH LANES One More 2007 Hour		
Both Approaches - Major Street X 2384 2310 2215 1866		
Higher Approach - Minor Street X 123 511 430		
*All plotted points fall above the applicable curve in Figure 4C-1. (URBAN AREAS)	Yes 🗆	No 🛘
OR, All plotted points fall above the applicable curve in Figure 4C-2. (RURAL AREAS)	Yes 🗹	No 🗆
VARRANT 3 - Peak Hour SATISFIED Part A or Part B must be satisfied)	YES 💢	ио □
ART A SATISFIED All parts 1, 2, and 3 below must be satisfied for the same one hour, for any four consecutive 15-minute periods)	YES 🗆	ио ⊠
1. The total delay experienced by traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds four vehicle-hours for a one-lane approach, or five vehicle-hours for a two-lane approach; AND pm - 2.6 veh - hrs	Yes 🗆	No 🔯
The volume on the same minor street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes; AND	Yes 📈	No 🗆
 The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with three approaches. 	Yes X	No 🔲
APPROACH LANES One More Hour SATISFIED	YES 💢	ио 🗌
Both Approaches - Major Street X 2384 2215		
Higher Approach - Minor Street X 3 511		
The plotted point falls above the applicable curve in Figure 4C-3. (URBAN AREAS)	Yes 🔲	No 🗌
OR, The plotted point falls above the applicable curve in Figure 4C-4. (RURAL AREAS)		

Chapter 4C – Traffic Control Signal Needs Studies Part 4 – Highway Traffic Signals

(FHWA's MUTCD 2003 including Revisions 1 and 2, as amended for use in California)

Buildoot + Project

Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

Siempre Viva/ Hawano Dr North

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-2. Warrant 2, Four-Hour Vehicular Volume (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 64 km/h OR ABOVE 40 mph ON MAJOR STREET)

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Chapter 4C - Traffic Control Signal Needs Studies Part 4 - Highway Traffic Signals

(FHWA's MUTCD 2003 including Revisions 1 and 2, as amended for use in California)

Buildout + Project

Figure 4C-3. Warrant 3, Peak Hour

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Chapter 4C - Traffic Control Signal Needs Studies Part 4 - Highway Traffic Signals

Page 4C-16

Buildout + Hawano Phases 1-2

Figure 4C-103 (CA). Traffic Signal Warrants Worksheet (Average Traffic Estimate Form)

DIST	CO RTE	PM		CALC 9H	_ DATE_	8-04-11
Major St:	Siempre	Viva	Rd	Critical Approach Speed	DATE_	mph
	imit or critical speed o	The state of the same of	et traffic > 64 k	Or >	RURAL (R)	mph.
THE MODILE	op al ca of isolated col	initiality of	· i o,ooo populi		URBAN (U)	
	(Based o	n Estima	ted Average	Daily Traffic - See No	ote)	

CONDITION A - Minimum Vehicular Volume	Minimum Requirements EADT								
Satisfied Not Satisfied Number of lanes for moving traffic on each approach	Vehicles Per Day on Major Street (Total of Both Approaches)	Vehicles Per Day on Higher-Volume Minor Street Approach (One Direction Only)							
Major Street Minor Street 1 1 1 1 2 or More 3	Urban Rural 8,000 5,600 9,600 6,720 9,600 6,720 8,000 5,600 26,230	Urban Rural 2,400 1,680 2,400 1,680 3,200 2,240 3,200 2,240 2,660							
CONDITION B - Interruption of Continuous Traffic Satisfied Not Satisfied	Vehicles Per Day on Major Street (Total of Both Approaches)	Vehicles Per Day on Higher-Volume Minor Street Approach (One Direction Only)							
Number of lanes for moving traffic on each approach Major Street Minor Street 1 1 1 2 or More 1 2 or More	Urban Rural 12,000 8,400 14,400 10,080 14,400 10,080 12,000 8,400 26,270	Urban Rural 1,200 850 1,200 850 1,600 1,120 1,600 1,120 2,660							
Combination of CONDITIONS A + B Satisfied Not Satisfied No one condition satisfied, but following conditions fulfilled 80% or more X B	2 CONDITIONS 80%	2 CONDITIONS 80%							

Note: To be used only for NEW INTERSECTIONS or other locations where it is not reasonable to count actual traffic volumes.

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

-Synchro Analysis

	*	-	4	*	1	1				
Movement	EBL	EBT	WBT	WBR	SBL	SBR				
Lane Configurations	*	个个	**	1	34	7				
Sign Control		Free	Free		Stop					
Grade		0%	0%		0%					
Volume (veh/h)	249	1190	683	262	32	95				
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95				
Hourly flow rate (vph)	262	1253	719	276	34	100				
Pedestrians										
Lane Width (ft)										
Walking Speed (ft/s)										
Percent Blockage										
Right turn flare (veh)										
Median type					Raised					
Median storage veh)					1					
Upstream signal (ft)			624							
pX, platoon unblocked	0.95				0.95	0.95				
vC, conflicting volume	995				1869	359				
vCl, stage 1 conf vol					719					
vC2, stage 2 conf vol					1151					
vCu, unblocked vol	942				1863	273				
tC, single (s)	4.1				6.8	6.9				
tC, 2 stage (s)					5.8					
tF(s)	2.2				3.5	3.3				
p0 queue free %	62				73	85				
cM capacity (veh/h)	688				123	688				
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	SB 1	SB 2		
Volume Total	262	626	626	359	359	276	34	100		
Volume Left	262	0	0	0	0	0	34	0		
Volume Right	0	0	0	0	0	276	0	100		
cSH	688	1700	1700	1700	1700	1700	123	688		
Volume to Capacity	0.38	0.37	0.37	0.21	0.21	0.16	0.27	0.15		
Queue Length 95th (ft)	45	0	0	0	0	0	26	13		
Control Delay (s)	13.4	0.0	0.0	0.0	0.0	0.0	45.1	11.1		
Lane LOS	В						E	В		
Approach Delay (s)	2.3			0.0			19.7			
Approach LOS							C			
Intersection Summary										
Average Delay			2.3		OUT	1.00				
Intersection Capacity Util	lization		46.0%	1	CU Leve	el of Serv	rice	*	A	
Analysis Period (min)			15							

Darnell & Associates, Inc.
Y:\091201-hawano\Analysis\Synchro\Synchro-08-04-11\Project Access\Buildout + Project-AM.sy7

8/18/2011-vsh

	1	-	4	*	1	1				awano Phas	
Movement	EBL	EBT	WBT	WBR	SBL	SBR					
Lane Configurations	79	**	^	7	7	7	***************************************		****		•
Sign Control		Free	Free		Stop						
Grade		0%	0%		0%						
Volume (veh/h)	62	1029	1059	65	131	380					
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95					
Hourly flow rate (vph) Pedestrians	65	1083	1115	68	138	400					
Lane Width (ft)											
Walking Speed (ft/s)											
Percent Blockage											
Right turn flare (veh)											
Median type					Raised						
Median storage veh)					1						
Upstream signal (ft)			624								
pX, platoon unblocked	0.84				0.84	0.84					
vC, conflicting volume	1183				1787	557					
vC1, stage 1 conf vol					1115						
vC2, stage 2 conf vol					672						
vCu, unblocked vol	1026				1746	280					
tC, single (s)	4.1				6.8	6.9					
tC, 2 stage (s)					5.8						
tF(s)	2.2				3.5	3.3					
p0 queue free %	88				23	33					
cM capacity (veh/h)	564				179	601					
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	SB 1	SB 2			
Volume Total	65	542	542	557	557	68	138	400			
Volume Left	65	0	0	0	0	0	138	0			
Volume Right	0	0	0	0	0	68	0	400			
cSH	564	1700	1700	1700	1700	1700	179	601			
Volume to Capacity	0.12	0.32	0.32	0.33	0.33	0.04	0.77	0.67			
Queue Length 95th (ft)	10	0	0	0	0	0	127	124			
Control Delay (s)	12.2	0.0	0.0	0.0	0.0	0.0	71.7	22.1			
Lane LOS	В						F	C			
Approach Delay (s)	0.7			0.0			34.8				
Approach LOS							D				
Intersection Summary						smanne.					
Average Delay Intersection Capacity Util Analysis Period (min)	ization		6.8 59.5% 15	10	CU Leve	l of Servi	ce		В		

Darnell & Associates, Inc.

Y:\091201-hawano\Analysis\Synchro\Synchro-08-04-11\Project Access\Buildout + Project-PM.sy7

8/18/2011-vsh

	*	-	4-	*	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	^	个 个	7	*	7
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Frt				0.850	10000	0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1770	3539	3539	1583	1770	1583
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1770	3539	3539	1583	1770	1583
Satd. Flow (RTOR)				276	10000	100
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Volume (vph)	249	1190	683	262	32	95
Adj. Flow (vph)	262	1253	719	276	34	100
Lane Group Flow (vph)	262	1253	719	276	34	100
Turn Type	Prot			Perm		Perm
Protected Phases	5	2	6		4	
Permitted Phases				6		4
Total Split (s)	34.0	72.2	38.2	38.2	25.8	25.8
Act Effct Green (s)	30.0	82.1	48.1	48.1	7.9	7.9
Actuated g/C Ratio	0.31	0.84	0.49	0.49	0.08	0.08
v/c Ratio	0.48	0.42	0.41	0.30	0.24	0.45
Control Delay	31.4	2.6	7.4	1.4	45.5	15.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	31.4	2.6	7.4	1.4	45.5	15.7
LOS	C	A	A	Α	D	В
Approach Delay		7.6	5.7		23.3	-
Approach LOS		A	Α		C	
Intersection Summary						

Intersection Summary

Cycle Length: 98

Actuated Cycle Length: 98

Offset: 26 (27%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.48 Intersection Signal Delay: 7.7

Intersection Capacity Utilization 46.0%

Analysis Period (min) 15

Intersection LOS: A ICU Level of Service A

Splits and Phases: 85: Siempre Viva Rd & Hawano Dr. North

